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Abstract

A rigorous solution is obtained for the temperature ®eld and the Nusselt numbers in the fully developed thermal
region of rectangular ducts, wherein a laminar fully developed velocity pro®le occurs. The H1 thermal boundary

condition, constant axial wall heat ¯ux with a constant peripheral wall temperature, has been examined. The two
dimensional (2D) temperature distribution and the Nusselt numbers are calculated as functions of the aspect ratio.
The results, in terms of 2D-temperature pro®les and Nusselt numbers, are presented and discussed in tables and
graphs, considering all the possible combinations of heated and adiabatic walls of the rectangular cross section. A

comparison with the numerically evaluated H1 Nusselt numbers found in literature is presented. The present
analytical results are a powerful tool to test the commercial or self-produced thermal ¯uid-dynamic codes which
permit the investigation of the internal forced convection of incompressible ¯ows. # 1999 Elsevier Science Ltd. All

rights reserved.
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1. Introduction

The analysis of the thermal behaviour of Newtonian

laminar ¯ows through rectangular ducts is a topic of

special interest in compact and micro-heat exchangers;

in fact in these components the hydraulic diameter of

the channels is so small that the ¯ow regime is usually

laminar. Rectangular ducts are employed in the tube-

®n heat exchangers and in the plate-®n heat exchangers

where this geometry provides a large surface-area-to-

volume ratio and enhances the heat transfer coe�-

cients. The micro-heat exchangers are an e�cient

means for removing high heat ¯uxes with relatively

small temperature gradients. Most compact and micro-

heat exchanger studies have focused on a conduit with

a rectangular cross-section in the ¯ow direction [1,2].

The theoretical analysis of the thermal behaviour of

rectangular ducts is more complex and rarer than in

the case of circular pipe ¯ow. In fact, the investigation

of rectangular ducts is very complicated because it

requires a two-dimensional (2D) analysis. Generally,

the thermal boundary conditions are also complex

because there are many ways of imposing di�erent

temperatures or heat ¯uxes on the four wetted sides.

For example, in a compact or micro-heat exchanger it

can occur only one or two sides of the section are

heated with a uniform heat ¯ux whereas the other

sides are insulated [2]. A clear understanding of the

thermal boundary conditions is essential. Recent
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reviews [3,4] have proposed a systematic exposition of

the main classes of boundary conditions. For non-cir-

cular ducts heated, for example, with an electric resist-

ance, all with negligible normal wall thermal

resistance, it is possible to consider two cases:

(a) for highly conductive materials (e.g., copper,

aluminium) the axial wall heat ¯ux may be con-

sidered to be constant with uniform peripheral wall

temperature (H1 boundary condition);

(b) for very low conductive materials (e.g., glass-

ceramic, te¯on) with the duct having uniform wall

thickness, the axial wall heat ¯ux can be ®xed as

constant with a uniform peripheral wall heat ¯ux

(H2 boundary condition).

Moreover, many di�erent situations can be considered,

assuming a particular condition for every side of the

rectangle; in the literature, eight classic thermal ver-

sions are proposed for the H1 and H2 problem. For

any boundary condition, extensive numerical, analyti-

cal and experimental studies have been carried out for

laminar fully developed ¯ow.

For the H2 boundary condition, an analytical sol-

ution for any thermal version considered was published

by Spiga and Morini [5]. The temperatures and the

Nusselt numbers are analytically predicted in Ref. [5]

as a function of the aspect ratio of the rectangular

duct under the assumption of a steady-state laminar

¯ow, fully developed both hydrodynamically and ther-

mally.

The Nusselt numbers in laminar, fully developed

¯ow under H1 boundary conditions have been calcu-

lated numerically by many authors. Glaser [6] uses a

®nite di�erence technique to study the temperature dis-

tribution in a square channel subjected to H1 bound-

ary conditions. Clark and Kays [7] complete that work

by determining the Nusselt numbers in rectangular

channels with aspect ratios equal to 0 (slab), 0.25, 1/3,

0.5 and 1/1.4. They use a discretized grid of 10� 10b
meshes, where b is the aspect ratio of the rectangular

duct investigated. Miles and Shin [8] increase the grid

meshes to 40� 40b. Schmidt and Newell [9] calculate

the Nusselt number by a ®nite di�erence method in the

eight possible combinations of adiabatic and heated

sides. Their results, reported as a function of the aspect

ratio b, are corrected by Shah and London [4], who

calculate the Nusselt number by using the hydraulic di-

ameter instead of the heated perimeter. Chandrupatla

and Sastri [10] obtain the fully developed H1 Nusselt

number for a square duct as a particular case of the

numerical solutions for laminar heat transfer of a non-

Newtonian ¯uid. Montgomery and Wilbulswas [11]

and Lyczkowski et al. [12] solved the thermal entry

length problem for a square duct subjected to the H1

boundary condition by using the explicit ®nite di�er-

ence method. The only analytical solution for evalu-

ating the temperature pro®le in a rectangular duct for

the H1 boundary condition is due to Marco and Han

[13] who analyse the H1 problem with all sides heated

Nomenclature

a, b longer and shorter sides, respectively,
of the rectangular cross section (m)

A number de®ned in Eq. (7)

cp ¯uid speci®c heat (J kgÿ1 Kÿ1)
Dh hydraulic diameter of the duct

2ab=�a� b� (m)

gi coe�cients de®ned in Eq. (21)
h heat transfer coe�cient (W mÿ2

Kÿ1)
j, k, l, n, m, p summation integer indices
K ¯uid thermal conductivity (W mÿ1

Kÿ1)
Lh heated perimeter length (m)

L�h dimensionless heated perimeter
length Lh=a

Nu Nusselt number hDh=K
q ' thermal power per unit of length (W

mÿ1)
tn,m coe�cients de®ned in Eq. (13)

T ���� dimensionless ¯uid temperature
de®ned in Eq. (4)

T��� dimensionless ¯uid temperature
de®ned in Eq. (8)

vn,m coe�cients de®ned in Eq. (7)

u��� ¯uid velocity (m sÿ1)
V(�) dimensionless ¯uid velocity
W average ¯uid velocity (m sÿ1)
x, y, z dimensionless rectangular Cartesian

co-ordinates
a ¯uid thermal di�usivity (m2sÿ1)
b aspect ratio b=a < 1
r ¯uid density (kg mÿ3)
y��� ¯uid temperature (K)
x, Z, z Cartesian co-ordinates (m)

Subscripts
b bulk quantity
w quantity evaluated at the wall

0 inlet quantity
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by applying the formal analogy that exists between this
thermal problem and the shear stress problem in a thin

slab subjected to uniform load on the perimeter.
The aim of this paper is the rigorous determination

of the temperature pro®le and the Nusselt numbers of

a ¯uid with laminar fully developed velocity pro®le
through rectangular ducts for the H1 boundary con-
ditions for any combination of heated and adiabatic

sides.

2. Basic equations

2.1. Energy equation

Consider a steady laminar ¯ow in the thermally
developed region of a rectangular duct with axially
unchanging cross-section. A Cartesian system of co-
ordinates x, Z, z is assumed, with its origin in the left

bottom corner of the inlet rectangular cross section �Z
along the short side b, z perpendicular to the cross sec-
tion). The ¯uid has a laminar fully developed pro®le of

velocity u�x,Z� and a uniform inlet temperature
y0�z � 0�. Under the assumption of constant ¯uid
properties and neglecting axial thermal conduction,

natural convection, viscous dissipation and internal
energy sources, with rigid and non-porous duct walls,
the di�erential steady state energy equation may be

written as:

@ 2y

@x2
� @

2y
@Z2
� u�x,Z�

a
@y
@z

�1�

In order to solve Eq. (1) an energy balance between
section z and z� dz gives the axial variation of the

¯uid bulk temperature yb for the H1 boundary con-
dition:

@yb

@z
� q 0

rcpWab
�2�

where q 0 is the thermal power per unit of length
imposed on the heated walls of the rectangular duct

and W is the average velocity. In the fully developed
thermal region of a heated duct the temperature pro®le
continues to change with z but the `relative tempera-
ture shape' of the pro®le no longer changes. It is poss-

ible to demonstrate that, in the thermal fully
developed region for the H1 boundary condition, the
following ensures:

@yb

@z
� @y
@z

�3�

It is suitable to introduce the dimensionless quantities:

x � x
a
, 0RxR1; y � Z

a
, 0RyRb � b

a
;

T � � K�yÿ y0 �
q 0

, V�x,y� � u

W

�4�

Consequently, the dimensionless energy balance

equation is readily obtained in the following forms for
the H1 problem examined:

@ 2T �

@x 2
� @

2T �

@y2
� V�x,y�

b
�5�

where the dimensionless velocity distribution in lami-

nar ¯ow through rectangular ducts is well known (see
Spiga and Morini [14]):

V�x,y� �
X1

n�1,odd

X1
m�1,odd

vn,m sin�npx�sin

�
mpy
b

�
�6�

The series coe�cients vn,m are:

vn,m � p2

4mn
ÿ
b2n2 �m2

� 1X1
i�1,odd

X1
j�1,odd

1

i2j2
ÿ
b2i2 � j2

�
� 1

A�b�mn
ÿ
b2n2 �m2

� �7�

where the number A�b� depends only on the aspect

ratio of the duct [5] and can be approximated by the
third-order polynomial: 0:5059ÿ 0:3022bÿ
0:00642b2 � 0:0747b3:

2.2. Thermal boundary conditions

In this paper, the eight thermal versions proposed in
the literature for the H1 problem will be considered;
the following nomenclature is usually assumed in the

analysis of rectangular ducts for those eight versions:
4: four constant wall temperatures; 3L: three constant
wall temperatures and one adiabatic short side; 3S:
three constant wall temperatures and one adiabatic

long side; 2L: two constant wall temperatures and two
adiabatic short sides; 2S: two constant wall tempera-
tures and two adiabatic long sides; 2C: one short and

one long constant wall temperatures (corner version);
1L: one constant wall temperature long side; 1S: one
constant wall temperature short side.

The H1 boundary condition states that the wall tem-
perature Tw�z� is uniform on the heated length of a
rectangular perimeter and that it increases linearly
with the z longitudinal coordinate (Marco and Han

[13]). Therefore, the temperature ®eld can be written
as:

T ��x,y,z� � Tw�z� � T�x,y� �8�
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It is possible to use the energy equation (5) to deter-
mine the part of the temperature distribution that does
not depend on z; it can be observed that on the heated

perimeter T�x,y� vanishes. In order to ®nd the tem-
perature ®eld T�x,y� for each H1 thermal version, the
boundary conditions that one combines with the

energy equation can be written as:8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

d1xT�0,y� � d2x
dT

dx

����
x�0
� 0

d3xT�1,y� � d4x
dT

dx

����
x�1
� 0

d1yT�x,0� � d2y
dT

dy

����
y�0
� 0

d3yT�x,b� � d4y
dT

dy

����
y�b
� 0

�9�

The coe�cients dNi depend on the speci®ed combi-

nation of heated and adiabatic walls, imposed by the
boundary conditions. With reference to the eight ther-
mal versions considered, the values assumed by the

constants dNi are shown in Table 1 for the H1 problem.

2.3. Bulk temperature and Nusselt number

The knowledge of both the temperature and velocity
distribution over a cross section of the rectangular
duct allows the determination of the bulk temperature:

Tb � 1

b

�1
0

�b
0

T�x,y�V�x,y� dx dy �10�

Finally, the Nusselt number can be obtained by an

energy balance on the heated perimeter of the rec-
tangular duct; its expression is:

Nu � ÿ 2b
L�h �1� b�Tb

�11�

where L�h is the dimensionless heated perimeter de®ned
as Lh=a.

3. The solution procedure: the ®nite-integral transform

method

The di�erential problem de®ned by Eq. (5), subject
to the boundary conditions speci®ed for all the thermal
versions that have been considered (Eq. (9)), is linear

and its solution can be tackled by the ®nite-integral
transform technique.
In order to solve the temperature problem given by

Eq. (5) with the eigenfunction expansion technique, the

appropriate eigenvalue problem is taken as:8>>>>>>>><>>>>>>>>:

dFi,n

di
� l2i,nFi,n � 0

d1iFi,n�0� � d2i
dFi,n

di

����
0

� 0

d3iFi,n�d� � d4i
dFi,n

di

����
d
� 0 with d �

�
1 if i � x
b if i � y

�12�
where i is equal to x or y and n is the order of the gen-

Table 1

Coe�cients dNi for the H1 problem

Version d1x d2x d3x d4x d1y d2y d3y d4y

1L 0 1 0 1 1 (or 0) 0 (or 1) 0 (or 1) 1 (or 0)

1S 1 (or 0) 0 (or 1) 0 (or 1) 1(or 0) 0 1 0 1

2L 0 1 0 1 1 0 1 0

2S 1 0 1 0 0 1 0 1

2C 1 (or 0) 0 (or 1) 0 (or 1) 1 (or 0) 1 (or 0) 0 (or 1) 0 (or 1) 1 (or 0)

3L 1 (or 0) 0 (or 1) 0 (or 1) 1 (or 0) 1 0 1 0

3S 1 0 1 0 1 (or 0) 0 (or 1) 0 (or 1) 1 (or 0)

4 1 0 1 0 1 0 1 0

Table 2

Eigenvalues and eigenfunctions for the H1 problem

Version lxn ly,m Fx,n Fy,m

1L np �2mÿ 1� p
2b

cos�lx,nx� sin�ly,my�

1S �2nÿ 1�p
2

mp
b

sin�lx,nx� cos�ly,my�

2L np
mp
b

cos�lx,nx� sin�ly,my�

2S np
mp
b

sin�lx,nx� cos�ly,my�

2C �2nÿ 1�p
2

�2mÿ 1�p
b

sin�lx,nx� sin�ly,my�

3L �2nÿ 1�p
2

mp
b

sin�lx,nx� sin�ly,my�

3S np �2mÿ 1� p
2b

sin�lx,nx� sin�ly,my�

4 np
mp
b

sin�lx,nx� sin�ly,my�
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Table 3

The coe�cients tn,m of Eq. (13): versions 1L, 1S, 2L, 2S

Version tn,m

1L ÿ 128b
p4A�b�

P1
k�1,odd

P1
j�1,odd

dn� ÿ 1��mÿ1�=2ÿ
4n2b2

� �m2
ÿ
b2k2

�
� j2�k2 �ÿn2

ÿ
4j2
�
ÿm2 for n � 0 or even, and m odd

1S ÿ 128b
p4A�b�

P1
k�1,odd

P1
j�1,odd

dm ÿ1�nÿ1�=2
ÿ
n2b2

�
�4m2

ÿ
b2k2

�
� j2�4k2 �ÿn2

ÿ
j2
�
ÿm2 for n odd, and m � 0 or even

2L ÿ 4b
p3A�b�

P1
k�1,odd

dn
m
ÿ
n2b2

� �m2
ÿ
b2k2

�
�m2�k2 �ÿn2 for n � 0 or even and m odd

2S ÿ 4b
p3A�b�

P1
j�1,odd

dm
n
ÿ
n2b2

��m2
ÿ
b2n2

�
� j2

ÿ
j2
�
ÿm2 for n odd and m � 0 or even

di � 1 if i 6� 0

di � 1=2 if i � 0

Table 4

The coe�cients tn,m of Eq. (13): versions 2C, 3L, 3S, 4

2C ÿ 256b
p4A�b�

P1
k�1,odd

P1
j�1,odd

�ÿ1�nÿ1=2�ÿ1�mÿ1=2
�n2b2 � �m2

ÿ
b2k2

�
� j2�4k2 �ÿn2

ÿ
4j2
�
ÿm2 for n and m odd

3L ÿ 32b
p3A�b�

P1
k�1,odd

ÿ1�nÿ1 �=2
m�n2b2 � �4m

2
ÿ
b2k2

�
�m2�4k2 �ÿn2 for n and m odd

3S ÿ 32b
p3A�b�

P1
j�1,odd

ÿ1�mÿ1 �=2
n�4n2b2 � �m

2
ÿ
b2n2

�
� j2

ÿ
4j2
�
ÿm2 for n and m odd

4 ÿ b
p2A�b�mn�n2b2 � �m

22 for n and m odd

Table 5

The bulk temperature for the H1 problem: versions 1L, 1S, 2L, 2S

Version Tb

1L ÿ 1024b
p6A2�b�

P1
n�0,even

P1
m�1,odd

P1
l�1,odd

P1
p�1,odd

P1
k�1,odd

P1
j�1,odd

1ÿ
b2k2

�� j2�k2 �ÿn2ÿ4j2 �ÿm2 dnÿ
l2b2

�
�p2

ÿ
4b2n2

�
�m2�l2 �ÿn2

ÿ
4p2

�
ÿm2

1S ÿ 1024b
p6A2�b�

P1
n�1,odd

P1
m�0,even

P1
l�1,odd

P1
p�1,odd

P1
k�1,odd

P1
j�1,odd

1ÿ
b2k2

�� j2�4k2 �ÿn2ÿj2 �ÿm2 dmÿ
l2b2

��p2ÿb2n2 �
�4m2�4l2 �ÿn2

ÿ
p2
�
ÿm2

2L ÿ 4b
p4A2�b�

P1
n�0,even

P1
m�1,odd

P1
l�1,odd

P1
k�1,odd

dnÿ
b2k2

��m2�k2 �ÿn2m2
ÿ
l2b2

�
�m2

ÿ
b2n2

�
�m2�l2 �ÿn2

2S ÿ 4b
p4A2�b�

P1
n�1,odd

P1
m�0,even

P1
p�1,odd

P1
j�1,odd

dmÿ
b2n2

�� j2ÿj2 �ÿm2n2
ÿ
n2b2

�
�m2

ÿ
b2n2

�
�p2

ÿ
p2
�
ÿm2

di � 1 if i%0

di � 1=2 if i � 0
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eral eigenvalue �l� and of the general eigenfunction �F�
that ful®ls the Sturm±Liouville problem de®ned by

Eq. (12), where the coe�cients dNi assume, for each
H1 thermal version considered, the values quoted in
Table 1.

In heat conduction problems the in®nite series of
eigenvalues li,n and the related eigenfunctions Fi,n that
resolve problem (12) are used frequently and their ex-

pressions can be found in all the textbooks on heat
conduction (Cotta [15] and Ozisik [16]).
For the sake of completeness, Table 2 shows the

eigenvalues and the eigenfunctions generated by prob-
lem (12) for all the thermal versions considered of the
H1 problem.
Using the appropriate eigenfunctions (Table 2), the

unknown temperature ®eld is sought by resorting to a
double series:

T�x,y� �
X1
n�0

X1
m�0

tn,mFx,nFy,m �13�

The temperature distribution is de®ned, with the excep-
tion of an additive constant, if one determines the con-
stants tn,m. In order to obtain the solution to Eq. (5),
the ®rst step consists of substituting the laminar vel-

ocity distribution (Eq. (6)) in the right-hand side of
Eq. (5) and of multiplying every term of the energy
equation by Fx,nFy,m and by integrating over x,

between 0 and 1, and over y, between 0 and b.

ÿ
�
l2x,n � l2y,m

�
Nn,xNm,ytn,m

�
X1

p�1,odd

X1
j�1,odd

vp,j
b
cp,ncj,m �14�

where:

Nn,i �
�d
0

F2
n,i di, ck,l �

�d
0

sin

�
kpi
d

�
Fl,i di �15�

The integrals appearing in this procedure can be easily
and patiently solved by the classic methods inasmuch as

the eigenfunctions quoted in Table 2 are very simple trig-
onometric functions. Using Eq. (15), after some algebra
it is possible to obtain the unknown coef-

®cientsNn,i and ck,l for all the thermal versions of the H1
problem examined; the temperature ®eld for each H1
thermal version can be obtained by solving the algebraic

equation (14) with respect to tn,m and using Eq. (13).

T�x,y� �
X1
n�0

X1
m�0

X1
p�1,odd

X1
j�1,odd

ÿ 1�
l2x,n � l2y,m

�
Nn,xNm,y

vp,j

b
cp,ncj,mFn,xFm,y

�16�

From Eq. (10) one can calculate the bulk temperature
for all the versions of the H1 problem. In fact, if one
replaces the laminar velocity distribution (Eq. (6)) and
the temperature ®eld (Eq. (13)) in Eq. (10) it is easy to

demonstrate that the bulk temperature may be written
as:

Tb�b� � 1

b

X1
l�1,odd

X1
k�1,odd

X1
n�0

X1
m�0

tn,mvl,kcl,nck,m �17�

Introducing this expression in Eq. (11) one obtains the
exact expression of the Nusselt number for each version

of the H1 problem considered.

3.1. Version 4

The proposed procedure can be tested for version 4
of the H1 problem. In this case the temperature ®eld
(Eq. (16)) can be expressed, by using the appropriate

eigenfunctions and eigenvalues shown in Table 2, as:

Table 6

The bulk temperature for the H1 problem: versions 2C, 3L, 3S, 4

Version Tb

2C ÿ 4096b
p6A2�b�

P1
n�1,odd

P1
m�1,odd

P1
l�1,odd

P1
p�1,odd

P1
k�1,odd

P1
j�1,odd

1

�b2k2 � � j
2�4k2 �ÿn2

ÿ
4j2
�
ÿm2

ÿ
l2b2

�
�p2

ÿ
b2n2

�
� m2�4l2 �ÿn2

ÿ
4p2

�
ÿm2

3L ÿ 64b
p4A2�b�

P1
n�1,odd

P1
m�1,odd

P1
j�1,odd

P1
k�1,odd

1

m2�b2k2 � �m
2�4k2 �ÿn2

ÿ
j2b2

�
�m2

ÿ
b2n2

�
�4m2

ÿ
4j2
�
ÿn2

3S ÿ 64b
p4A2�b�

P1
n�1,odd

P1
m�1,odd

P1
j�1,odd

P1
l�1,odd

1

n2�b2n2 � � j
2
ÿ
4j2
�
ÿm2

ÿ
4n2b2

�
�m2

ÿ
b2n2

�
� l2�4l2 �ÿm2

4 ÿ b
4p2A2�b�

P1
n�1,odd

P1
m�1,odd

1

n2m2�b2n2 � �m
23
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T�x,y� � ÿ b
p2

X1
n�1,odd

X1
m�1,odd

vn,mÿ
b2n2 �m2

�
� sin�npx�sin

�
mpy
b

�
�18�

In fact, in this case the eigenfunctions for the velocity
and the temperature ®eld are the same; for this reason

the coe�cients ck,l assume a simple value and some
summations vanish. In fact it is easy to demonstrate
that:

Nn,i �
�d
0

F2
n,i di � d

2
,

ck,l �
�d
0

sin

�
kpi
d

�
Fl,i di �

8><>:
0 if k 6� l

d
2

if k � l

�19�

The bulk temperature in this case can be deducted by
simplifying Eq. (17) by means of the results shown in
Eq. (19):

Fig. 1. Dimensionless temperature distributions in a rectangular duct with b � 1, 0.5 and 0.1, four sides heated (version 4).
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Tb�b� � ÿ b
4p2

X1
n�1,odd

X1
m�1,odd

v2n,mÿ
b2n2 �m2

� �20�

If one combines this result with Eqs. (7) and (11) it is

possible to demonstrate that the expression of the
Nusselt number coincides with the expression quoted
in the paper by Marco and Han [13] and used by Shah

and London in [4]. In other words, the general pro-
cedure shown in this paper to determine the tempera-
ture ®eld and the values assumed by the Nusselt

number for each version of the H1 problem, makes it
possible to obtain, as a particular case, the analytical
results quoted in literature for the version 4.

3.2. The others versions

In Table 3 are quoted the expressions assumed by

the tn,m coe�cients for versions 1L, 1S, 2L and 2S of
the H1 problem. For the versions 2C, 3L, 3S and 4 the
tn,m coe�cients are quoted in Table 4. Knowing the

Fig. 2. Dimensionless temperature distributions in a rectangular duct with b � 1, 0.5 and 0.1, version 3L.
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tn,m coe�cients, by means of Eq. (13) it is easy to cal-

culate the temperature distribution inside the rectangu-

lar duct, to obtain the exact expression of the bulk

temperature (de®ned in Eq. (10)) and hence, by using

Eq. (11), to determine the Nusselt numbers for any

combination of heated and adiabatic sides.

Fig. 3. Dimensionless temperature distributions in a rectangular duct with b � 0:5 and 0.1, version 3S.

Table 7

Comparison of the analytical Nusselt numbers obtained in this paper with the numerical results found in literature: versions 2C,

3L, 3S, 4

b Nu

4 3L 3S 2C

Present results and [4] Ref. [9] Present results Refs. [4,9] Present results Refs. [4,9] Present results Refs. [4,9]

1 3.608 3.599 3.568 3.556 3.568 3.556 2.811 2.836

0.9 3.620 3.612 3.688 ± 3.460 ± 2.817 2.843

0.8 3.664 3.655 3.836 ± 3.355 ± 2.840 2.866

0.7 3.750 3.740 4.018 3.991 3.259 3.195 2.886 2.911

0.6 3.895 3.884 4.246 ± 3.182 ± 2.961 2.987

0.5 4.123 4.111 4.539 4.505 3.140 3.146 3.079 3.104

0.4 4.472 4.457 4.923 4.885 3.163 3.169 3.256 3.279

0.3 4.990 4.969 5.439 5.393 3.302 3.306 3.523 3.538

0.2 5.738 5.704 6.131 6.072 3.639 3.636 3.925 3.914

0.1 6.785 6.700 7.044 6.939 4.283 4.252 4.523 4.410

0 8.235 8.235 8.235 8.235 5.385 5.385 5.385 5.385
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For the sake of completeness, the expressions of the
bulk temperature for each version of the H1 problem
are shown in Tables 5 and 6.

4. Results and discussion

The previous results have been worked out on a
common PC using MATHEMATICA1 3.0: few pro-
gram statements permit to do all the job. The avail-

ability of analytical expressions and the fast
convergence of the multiple series invoked into the sol-

ution make the present technique quite e�ective and
inexpensive in terms of computer time. The 2D tem-

perature distribution through the rectangular duct is
shown in Figs. 1±8, for di�erent values of the aspect

ratio (square duct, b � 0:5 and b � 0:1� and for all
eight combinations of heated and adiabatic walls. In

Fig. 1 the dimensionless ¯uid temperature ®eld is
sketched for the four heated walls (version 4), with

Fig. 4. Dimensionless temperature distributions in a rectangular duct with b � 1, 0.5 and 0.1, version 2C.
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b � 0:1, 0.5 and 1. One can observe that the tempera-

ture assumes negative values in each internal cross sec-

tion point and vanishes on the heated perimeter

because in the present analysis only positive wall heat
¯uxes (i.e. from the wall to the ¯uid) have been con-

sidered. From Fig. 1 it turns out that the minimum

¯uid temperature occurs at the centre of the rectangu-

lar duct. The value of the point of minimum decreases

with the aspect ratio until b reaches the value of 0.456;
for lower aspect ratios the point of minimum increases

[17]. In Fig. 2, for version 3L, the minimum ¯uid tem-

perature lies on the straight line y � b=2 next to the

adiabatic wall. The point of minimum departs from

the adiabatic wall when the duct aspect ratio decreases.

The solution to version 3S is shown in Fig. 3, for b �
0:1 and 0.5; obviously, for b � 1 (square duct) there is

no di�erence between versions 3L and 3S; the same

holds for versions 2L±2S and 1L±1S. It is interesting

to observe that the minimum of the 3S temperature

®eld, as opposed to version 3L, always occurs on the
adiabatic wall. Fig. 4 refers to the 2C version; it is

interesting to note that the minimum wall temperature

Fig. 5. Dimensionless temperature distributions in a rectangular duct with b � 1, 0.5 and 0.1, version 2L.
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is reached at the corner between the adiabatic sides

only for the square duct. For b < 1 the temperature

®eld is not symmetric with respect to the diagonal line

between the adiabatic and the heated corners; it is evi-

dent that the minimum wall temperature lies on the

adiabatic long side and departs from the adiabatic cor-

ner when the aspect ratio decreases. In Figs. 5 and 6

versions 2L and 2S are presented. The results show

how, for small aspect ratios, the temperature distri-

bution for version 2S tends to become 1D; in fact the

Fig. 6. Dimensionless temperature distributions in a rectangular duct with b � 0:5 and 0.1, version 2S.

Table 8

Comparison of the analytical Nusselt numbers obtained in this paper with the numerical results found in literature: versions 1L,

1S, 2L, 2S

b Nu

2L 2S 1L 1S

Present results Refs. [4,9] Present results Refs. [4,9] Present results Refs. [4,9] Present results Refs. [4,9]

1 4.095 4.094 4.095 4.094 2.686 2.712 2.686 2.712

0.9 4.274 ± 3.915 ± 2.818 ± 2.552 ±

0.8 4.472 ± 3.713 ± 2.964 ± 2.404 ±

0.7 4.693 4.662 3.485 3.508 3.127 3.149 2.237 2.263

0.6 4.944 ± 3.226 ± 3.309 ± 2.048 ±

0.5 5.237 5.203 2.929 2.947 3.514 3.539 1.832 1.854

0.4 5.592 5.555 2.583 2.598 3.750 3.777 1.585 1.604

0.3 6.039 5.997 2.171 2.182 4.031 4.060 1.295 1.312

0.2 6.609 6.561 1.659 1.664 4.379 4.411 0.951 0.964

0.1 7.331 7.248 0.979 0.975 4.822 4.851 0.530 0.538

0 8.235 8.235 0 0 5.385 5.385 0 0
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temperature variations along the y-direction are very

small, as can be observed in Fig. 6 for b � 0:1. On the

contrary, the border e�ect of the adiabatic sides is evi-

dent for version 2L with small aspect ratio too. The

1L and 1S temperature distributions are shown in

Figs. 7 and 8; it is evident how the minimum wall tem-

perature is located in the middle point of the long

adiabatic side (if version 1L is considered) or of the

short adiabatic side (if version 1S is considered). As

for version 2S, when the aspect ratio of the duct

decreases, the 1S temperature ®eld through the rec-

tangular channel tends to become 1D.

In Tables 7 and 8 are quoted the Nusselt numbers

calculated by means of the procedure suggested in this

paper as a function of the aspect ratio for the eight

thermal versions considered. In these Tables the

present analytical results are compared with the values

quoted in the paper by Shah and London [4] and due

Fig. 7. Dimensionless temperature distributions in a rectangular duct with b � 1, 0.5 and 0.1, version 1L.
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to Schmidt and Newell [9]. If one considers that the

Nusselt numbers predicted by Schmidt and Newell [9]

are calculated numerically it is possible to appreciate

the very high precision of these numerical results. The

highest values for Nu are observed for version 2L as

for the H2 boundary condition as shown in [5]. For

versions 2S and 1S the Nusselt numbers increase with

b, while the opposite happens for versions 4, 3L, 2L,

2C and 1L. For version 3S there exists one point of

minimum near b � 0:5: this fact is con®rmed by the

results quoted in [17] with reference to the uniform vel-

ocity pro®le (slug ¯ow). It is interesting to underline

that the well known results of the in®nite parallel

plates with uniform heat ¯ux on the walls are easily

obtained as a limiting situation of rectangular ducts

with the aspect ratio approaching zero (for versions

3S, 2C, 1L Nu � 140=26 when b40, while for versions

4, 3L, 2L Nu � 140=17 when b40). The analytical

results, in terms of 2D temperature maps and Nusselt

numbers, quoted in this paper can be used as a bench-

mark for commercial and self-produced codes for the

investigation of the forced convection of incompress

ible laminar fully developed ¯ows inside the ducts of

arbitrary cross-section. Finally, a ®fth order poly-

Fig. 8. Dimensionless temperature distributions in a rectangular duct with b � 0:5 and 0.1, version 1S.

Table 9

Polynomial coe�cients appearing in Eq. (21)

Version g0 g1 g2 g3 g4 g5 e (%)

4 8.235 ÿ16.819 25.327 ÿ20.079 8.3064 ÿ1.3622 0.031

3L 8.235 ÿ13.496 16.839 ÿ10.235 1.6157 0.609 ÿ0.039
3S 5.385 ÿ14.37 35.857 ÿ45.236 30.427 ÿ8.4936 0.289

2L 8.235 ÿ10.073 10.713 ÿ4.8181 ÿ1.2915 1.3301 ÿ0.035
2S 0 11.639 ÿ21.894 30.454 ÿ23.203 7.0994 0.11

2C 5.385 ÿ10.286 18.16 ÿ17.859 9.4777 ÿ2.0673 ÿ0.053
1L 5.385 ÿ6.4026 8.2377 ÿ7.4582 3.5329 ÿ0.609 ÿ0.053
1S 0 5.9624 ÿ7.4114 7.8682 ÿ5.2236 1.4904 ÿ0.097
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nomial approximation for calculating the Nusselt num-
bers for each H1 thermal version is given, with the aim

of o�ering a very simple but accurate tool for tech-
nicians and designers involved in heat transfer appli-
cations when the aspect ratio of the duct ranges

between 0.1 and 1:

Nu �
X5
i�0

gib
i �21�

The coe�cients gi are given in Table 9 for all the eight

versions of H1 conditions considered; the relative
di�erence e is positive when Eq. (21) gives the Nusselt
numbers greater than the rigorous calculation.

5. Concluding remarks

The paper contains an analytical study of heat trans-
fer for the dynamic and thermal fully developed region
of rectangular ducts, for the H1 boundary conditions.

The 2D temperature distribution has been analytically
determined for all the di�erent combinations of heated
and adiabatic walls of practical interest. The Nusselt

numbers are accurately predicted and compared with
the results obtained numerically by several authors.
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